Sr. Data Engineer - NYC, NY ONSITE

⭐ - Featured Role | Apply direct with Data Freelance Hub
This role is for a Sr. Data Engineer in NYC, NY, offering a 12-month contract at competitive pay. Requires 10+ years of experience, proficiency in Python, Spark, AWS, and data engineering methodologies. Onsite work is mandatory.
🌎 - Country
United States
💱 - Currency
$ USD
💰 - Day rate
Unknown
Unknown
🗓️ - Date discovered
April 23, 2025
🕒 - Project duration
More than 6 months
🏝️ - Location type
On-site
📄 - Contract type
Unknown
🔒 - Security clearance
Unknown
📍 - Location detailed
New York, NY
🧠 - Skills detailed
#Data Engineering #Data Processing #Airflow #Oracle #NoSQL #AI (Artificial Intelligence) #JSON (JavaScript Object Notation) #Infrastructure as Code (IaC) #Databricks #Python #Documentation #Terraform #Agile #Vault #Batch #MongoDB #Data Vault #Data Lake #Scala #Jenkins #Programming #Hadoop #Spark (Apache Spark) #Data Storage #AWS (Amazon Web Services) #Cloud #Storage #GIT #Java #Data Lakehouse
Role description

Role: Sr. Data Engineer

Location: NYC, NY ONSITE

Duration: 12 Months Contract

Interview Process: Face 2 Face

Experience: 10+ Years

Job Description :-

Required Skills:

1.Proficiency in data engineering programming languages (preferably Python, alternatively Scala or Java)

  1. Proficiency in atleast one cluster computing frameworks (preferably Spark, alternatively Flink or Storm)

  1. Proficiency in atleast one cloud data lakehouse platforms (preferably AWS data lake services or Databricks, alternatively Hadoop), atleast one relational data stores (Postgres, Oracle or similar) and atleast one NOSQL data stores (Cassandra, Dynamo, MongoDB or similar)

Proficiency in atleast one scheduling/orchestration tools (preferably Airflow, alternatively AWS Step Functions or similar)

  1. Proficiency with data structures, data serialization formats (JSON, AVRO, Protobuf, or similar), big-data storage formats (Parquet, Iceberg, or similar), data processing methodologies (batch, micro-batching, and stream), one or more data modelling techniques (Dimensional, Data Vault, Kimball, Inmon, etc.), Agile methodology (develop PI plans and roadmaps), TDD (or BDD) and CI/CD tools (Jenkins, Git,)

Strong organizational, problem-solving and critical thinking skills; Strong documentation skills

Preferred skills:

Experience using AWS Bedrock APIs

Knowledge of Generative AI concepts (such as RAG, Vector embeddings, Model fine tuning, Agentic AI)

Experience in IaC (preferably Terraform, alternatively AWS cloud formation)